
Assembler Language Assembler Language
"Boot Camp""Boot Camp"

Part 2 - Instructions Part 2 - Instructions
and Addressingand Addressing

SHARE in San FranciscoSHARE in San Francisco
August 18 - 23, 2002August 18 - 23, 2002

Session 8182 Session 8182

1

IntroductionIntroduction

Who are we?

John Dravnieks, IBM Australia

John Ehrman, IBM Silicon Valley Lab

Michael Stack, Department of Computer
Science, Northern Illinois University

2

IntroductionIntroduction

Who are you?
An applications programmer who needs to
write something in S/390 assembler?
An applications programmer who wants to
understand S/390 architecture so as to better
understand how HLL programs work?
A manager who needs to have a general
understanding of assembler?

Our goal is to provide for professionals an
introduction to the S/390 assembly language

3

IntroductionIntroduction

These sessions are based on notes from a
course in assembler language at Northern
Illinois University

The notes are in turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

4

IntroductionIntroduction

The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

ASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

5

IntroductionIntroduction

Both ASSIST and ASSIST/I are in the public
domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

Both ASSIST and ASSIST/I are available at
http://www.cs.niu.edu/~mstack/assist

6

IntroductionIntroduction

Other materials described in these sessions
can be found at the same site, at
http://www.cs.niu.edu/~mstack/share

Please keep in mind that ASSIST and
ASSIST/I are not supported by Penn State,
NIU, or any of us

7

IntroductionIntroduction

Other references used in the course at NIU:
Principles of Operation
System/370 Reference Summary
High Level Assembler Language Reference

Access to PoO and HLASM Ref is normally
online at the IBM publications web site

Students use the S/370 "green card" booklet
all the time, including during examinations
(SA22-7209)

8

Our Agenda for the WeekOur Agenda for the Week

Session 8181: Numbers and Basic
Arithmetic

Session 8182: Instructions and Addressing

Session 8183: Assembly and Execution;
Branching

9

Our Agenda for the WeekOur Agenda for the Week

Session 8184: Arithmetic; Program
Structures

Session 8185: Decimal and Logical
Instructions

Session 8186: Assembler Lab Using
ASSIST/I

10

Today's AgendaToday's Agenda

Basic S/390 Architecture and Program
Execution

General-Purpose Registers; Addressing
using a Base Register and a Displacement

Basic Instruction Formats

Some Conventions and Standards

A Complete Program
11

Basic S/390 Basic S/390
Architecture and Architecture and

Program ExecutionProgram Execution

12

There's more to a computer than just memory

We need to understand the architecture in
order to understand how instructions execute

We will need to understand how instructions
execute in order to understand how programs
accomplish their goals

Assembler Language provides the capability
to create machine instructions directly

S/390 ArchitectureS/390 Architecture

13

In addition to memory, there are (at least):

A Central Processing Unit (CPU)

A Program Status Word (PSW)

Sixteen general-purpose registers

Floating-point registers

Many other elements beyond our scope

S/390 ArchitectureS/390 Architecture

14

One of the characteristics of S/390 is that
programs and data share the same memory
(this is very important to understand)

The effect is that
Data can be executed as instructions
Programs can be manipulated like data

Common, Shared Memory for Common, Shared Memory for
Programs and DataPrograms and Data

15

This is potentially very confusing
Is 05EF16 the numeric value 151910 or is it an
instruction?
It is impossible to determine the answer
simply by inspection

Then how does the computer distinguish
between instructions and data?

Common, Shared Memory for Common, Shared Memory for
Programs and DataPrograms and Data

16

The Program Status Word (PSW) always has
the memory address of the next instruction
to be executed

It is this fact which defines the contents of
the memory location as an instruction

We will see the format of the PSW in Part 4,
but for now, we look at how it is used to
control the execution of a program (a
sequence of instructions in memory)

Common, Shared Memory for Common, Shared Memory for
Programs and DataPrograms and Data

17

In order to be executed by a CPU, an
assembler language program must first
have been

Translated ("assembled") to machine language
"object code" by the assembler
Placed ("loaded") into the computer memory

Once these steps are complete, we can
begin the execution algorithm

The Execution of a ProgramThe Execution of a Program

18

Step 1 - The memory address of the first
instruction to be executed is placed in the
PSW

Step 2 - The instruction pointed to by the
PSW is retrieved from memory by the
instruction unit

Step 3 - The PSW is updated to point to the
next instruction in memory

The Execution of a ProgramThe Execution of a Program

19

Step 4 - The retrieved instruction is
executed

If the retrieved instruction did not cause a
Branch (GoTo) to occur, go back to Step 2
Otherwise, put the memory address to be
branched to in the PSW, then go back to Step 2

This leaves many questions unanswered
(How does the algorithm stop?) but provides
the basic ideas

The Execution of a ProgramThe Execution of a Program

20

General-Purpose General-Purpose
Registers and Registers and

Base-Displacement Base-Displacement
AddressingAddressing

21

General-Purpose RegistersGeneral-Purpose Registers

The S/390 has sixteen General Purpose
registers

Each register is 32 bits (one fullword) in size

Each register has a number: 0, 1, ..., 15
which is unique

Registers are faster access than memory,
and are used both for computation and for
addressing memory locations

22

Base-Displacement AddressingBase-Displacement Addressing

Recall that every byte of a computer's
memory has a unique address, which is a
non-negative integer

This means that a memory address can be
held in a general purpose register

When it serves this purpose, a register is
called a base register

23

Base-Displacement AddressingBase-Displacement Addressing

The base address of a program depends on
where in memory the program is loaded

But locations relative to one another within
a program don't change, so displacements
are fixed

24

Base-Displacement AddressingBase-Displacement Addressing

S/390 uses what is called base-displacement
addressing for many instruction operands

A relative displacement is calculated at
assembly time and is stored as part of the
instruction, as is the base register number

The base register contents are set at
execution time, depending upon where in
memory the program is loaded

25

Base-Displacement AddressingBase-Displacement Addressing

The sum of the base register contents and
the displacement gives the operand's
effective address in memory

For example, if the displacement is 4 and
the base register contains 0000007C, the
effective address is 000080 (written
intentionally as 24 bits)

26

Base-Displacement AddressingBase-Displacement Addressing

When an address is coded in
base-displacement form, it is called explicit
(we will see implicit addresses shortly)

When coding base and displacement as part
of an assembler instruction, the format is
often D(B), depending on the instruction

D is the displacement, expressed as a decimal
number in the range 0 to 4095 (hex 000-FFF)
B is the base register number, except that 0
means "no base register," not "base register 0"

27

Base-Displacement AddressingBase-Displacement Addressing

For example: 4(1) 20(13) 0(11)

In 0(11), the base register gives the desired
address without adding a displacement

When the base register is omitted, a zero is
supplied

So coding 4 is the same as coding 4(0)

28

Base-Displacement AddressingBase-Displacement Addressing

Some instructions allow for another register
to be used to compute an effective address

The additional register is called an index
register

In this case, the explicit address operand
format is D(X,B) (or D(,B) if the index register
is omitted)

D and B are as above
X is the index register number

29

Base-Displacement AddressingBase-Displacement Addressing

For example, 4(7,2) is computed as an
effective address by adding 4 plus the
contents of index register 7 plus the
contents of base register 2

Again, 0 means "no register" rather than
"register 0"

This applies to the index register position of
an RX instruction, just as for the base register
position in any instruction that has one

30

Base-Displacement AddressingBase-Displacement Addressing

We will see next how the assembler
encodes instructions, converting them to
object code

As a preview, for D(B) format operands the
conversion is to hBhDhDhD, thus taking two
bytes (each h represents a hex digit, two
per byte)

31

Base-Displacement AddressingBase-Displacement Addressing

This explains why the displacement DDD is
limited to a maximum of 4095 (hex FFF)

Some recent instructions are called "relative"
instructions, and need no base register -
these are beyond our scope

Now, let's begin looking at instructions

32

Basic Instruction Basic Instruction
FormatsFormats

33

Instruction FormatsInstruction Formats

The process of "assembling" includes
encoding symbolic instructions, which
means converting them to machine
instructions

The assembler can also create data areas

34

Instruction FormatsInstruction Formats

A program is a combination of instructions
and data areas whose relative locations are
fixed at assembly time

This point is very important to understand -
it is part of what makes assembler language
difficult to learn

35

Instruction FormatsInstruction Formats

There are five basic machine instruction
formats we will need to understand

They are similar, but different in their
operands

Each machine instruction requires 2, 4, or 6
bytes of memory (usually referred to as 1, 2,
or 3 halfwords)

36

Instruction FormatsInstruction Formats

Each machine instruction (that we will see)
begins with a one-byte operation code

The five formats are named according to the
types of operand each has

37

Instruction FormatsInstruction Formats

RR - Register-Register
Occupies one halfword and has two operands,
each of which is in a register (0 - 15)

RX - Register-indeX register
Occupies two halfwords and has two
operands; the first is in a register, the second
is in a memory location whose address is
D(X,B)

38

Instruction FormatsInstruction Formats

RS - Register-Storage
Occupies two halfwords and usually has three
operands: two register operands and a
memory address in the form D(B)

SI - Storage-Immediate
Occupies two halfwords and has two
operands: a byte at memory address D(B) and
a single "immediate" data byte contained in the
instruction

39

Instruction FormatsInstruction Formats

SS - Storage-Storage
Occupies three halfwords and has two memory
operands of the form D(B) or D(L,B); each
operand may have a length field - this depends
on the specific instruction

There are variations of these formats,
including many infrequently-executed
operations whose op codes are two bytes
long instead of one

40

RR InstructionsRR Instructions

Our first machine instruction is type RR and
will add the contents of two registers,
replacing the contents of the first register
with the sum

This instruction is called ADD, and is
written symbolically as AR� � R1,R2

Note that the "direction" of the add is right to
left; this is a consistent rule for all but a few
instructions

41

RR InstructionsRR Instructions

An example is AR� � 2,14 which adds the
contents of register 14 to the contents of
register 2; the sum replaces the contents of
register 2

The assembly process will convert the
mnemonic AR to the operation code 1A

It will also convert each of the two register
values to hexadecimal (2 and E)

42

RR InstructionsRR Instructions

The instruction would then be assembled as
the machine instruction 1A2E at the next
available location in the program

In bits this is: 0001101000101110

All RR instructions assemble as hOPhOPhR1hR2

Another instruction is SUBTRACT, which is
written symbolically as SR� � R1,R2

43

RR InstructionsRR Instructions

For example, SR� � 2,14 would subtract the
contents of R14 from R2, replacing the
contents of R2 with the difference

Note the "Rn" shorthand for "register n"

The op code for SR is 1B

Both ADD and SUBTRACT can cause
overflow - we must be able to cope with this

44

RR InstructionsRR Instructions

Our final (for now) RR instruction is LOAD,
written symbolically as LR� � R1,R2

The contents of the first operand register are
replaced by the contents of the second
operand register (R2 contents are
unchanged)

The op code for LR is 18

LOAD cannot cause overflow
45

RR InstructionsRR Instructions
Exercises:

Encode AR� � 1,15� and SR� � 0,0

Decode 1834

If c(R0) = 001A2F0B, c(R1) = FFFFA21C,
and c(R6) = 000019EF� for each instruction:

After LR� � 6,0, c(R6) = ?
After AR� � 1,6, c(R1) = ?
After SR� � 1,6, c(R1) = ?

 001A2F0B,� FFFFBC0B,� FFFF882D
46

RX InstructionsRX Instructions

This format has a register operand and a
memory address operand (which includes an
index register - thus, the "RX" notation)

The RX version of LOAD is L� � R1,D2(X2,B2)
which causes the fullword at the memory
location specified by D2(X2,B2) to be copied
into register R1

47

RX InstructionsRX Instructions

Although the S/390 doesn't require it, the
second operand should also be on a
fullword boundary (...0, ...4, ...8, or ...C)

This is a good habit, and ASSIST/I does
require it

The encoded form of an RX instruction is:
hOPhOPhR1hX2 hB2hD2hD2hD2

48

RX InstructionsRX Instructions

The opcode for LOAD is 58, so the encoded
form of L� � 2,12(1,10) is 5821A00C

The reverse of LOAD is STORE, coded
symbolically as ST� � R1,D2(X2,B2), and
which causes the contents of R1 to be
copied to the fullword at the memory
location specified by D2(X2,B2)� (violates
the "right to left" rule of thumb)

The opcode for ST is 50
49

RX InstructionsRX Instructions

Exercises:
Encode ST� � 2,10(14,13)

Decode 5811801C

If c(R2) = 000ABC10, c(R3) = 0000000B,
and c(R4) = 000C1F11, what is the effective
address of the second operand?

 L� � � 0,16(,2)� � (Be careful!)
 ST� � 15,20(3,4)
 L� � � 8,0(2,4)

50

RX InstructionsRX Instructions

We have seen two RR instructions, AR and
SR (ADD and SUBTRACT)

Each has an RX counterpart
 A� � � R1,D2(X2,B2) [ADD]
 S� � � R1,D2(X2,B2) [SUBTRACT]

We now have almost enough instructions for
a complete program

51

Some Conventions Some Conventions
and Standardsand Standards

Assembler
Statement Coding
Conventions and

Program Entry and
Exit Rules

52

Coding Assembler StatementsCoding Assembler Statements

Recall the two ways we can view an
instruction

Symbolic: AR� � 3,2
Encoded: 1A32

The encoded form is easily the most
important

"Object Code - Nothing Else Matters"

But we write programs using the symbolic
form

53

Format of a Symbolic InstructionFormat of a Symbolic Instruction

Label (optional)
Begins in Column 1
1 to 63 characters (1 to 8 in ASSIST/I)
First character is alphabetic
Other characters may be 0 - 9 (or _ , except in
ASSIST/I)
Mixed case not allowed in ASSIST/I

54

Format of a Symbolic InstructionFormat of a Symbolic Instruction

Operation code mnemonic (required)
May begin in column 2 or after label (at least
one preceding blank is required)
Usually begins in column 10

Operands (number depends on instruction)
Must have at least one blank after op code
Separated by commas (and no blanks)
Usually begins in column 16

55

Format of a Symbolic InstructionFormat of a Symbolic Instruction

Continuation (Optional)
Non-blank in column 72 means the next
statement is a continuation and must begin in
column 16!
Also, columns 1 - 15 of the next statement
must be blank

56

Format of a Symbolic InstructionFormat of a Symbolic Instruction

Line comments (Optional)
Must have at least one blank after operands
Usually begin in column 36, cannot extend past
column 71
Some begin the comment with // or ; to be
consistent with other languages

Comment Statements
Asterisk (*) in column 1 means the entire
statement is a comment
These also cannot extend past column 71

57

Assembler Instructions (Directives)Assembler Instructions (Directives)

In addition to symbolic instructions which
encode to machine instructions, there are
also assembler instructions or directives
which tell the assembler how to process,
but which may not generate object code

The CSECT instruction (Control SECTion) is
used to begin a program and appears before
any executable instruction

 label� � � � CSECT

58

Assembler Instructions (Directives)Assembler Instructions (Directives)

The END instruction defines the physical
end of an assembly, but not the logical end
of a program

 � � � � � � � � � END� � � label

The logical end of our program is reached
when it returns to the program which gave
us control

59

Assembler Instructions (Directives)Assembler Instructions (Directives)

The DC instruction reserves storage at the
place it appears in the program, and
provides an initial value for that memory

 label� � � � DC� � � � mF'n'

where m is a non-negative integer called the
duplication factor, assumed to be 1 if omitted
Generates m consecutive fullwords, each with
value n

IBM calls DC "define constant" but a better
choice is "define storage with initial value"

60

Assembler Instructions (Directives)Assembler Instructions (Directives)

What's generated by TWELVE� DC� 2F'12'?

 0000000C0000000C

There are many other data types besides
fullword F

A variation is provided by the DS (Define
Storage) instruction, which also reserves
storage but does not give it an initial value
(so contents are unpredictable)

61

Entry ConventionsEntry Conventions

There are two registers which, by
convention, have certain values at the time a
program begins

Register 15 will have the address of the first
instruction of the program

62

Entry ConventionsEntry Conventions

Register 14 will have the address of the
location to be given control when execution
is complete

To get there, execute a "branch":
 � � � � � � BCR� � � B'1111',14
This instruction will be explained shortly

63

A Complete ProgramA Complete Program

64

A Complete ProgramA Complete Program

This is the first demo program in the
materials provided for these sessions

It has only five executable instructions and
reserves three fullwords of storage for data,
the first two of which have an initial value

In the next session we will analyze the
program thoroughly, but for today, we end
with just a list of the assembler statements

65

*� This� program� adds� two� numbers� that� are� taken
*� from� the� 5th� and� 6th� words� of� the� program.
*� The� sum� is� stored� in� the� 7th� word.
ADD2� � � � CSECT
� � � � � � � � L� � � � � � 1,16(,15)� � � Load� 1st� no.� into� R1
� � � � � � � � L� � � � � � 2,20(,15)� � � Load� 2nd� no.� into� R2
� � � � � � � � AR� � � � � 1,2� � � � � � � � � Get� sum� in� R1
� � � � � � � � ST� � � � � 1,24(,15)� � � Store� sum
� � � � � � � � BCR� � � � B'1111',14� � Return� to� caller
� � � � � � � � DC� � � � � F'4'� � � � � � � � Fullword� initially� 4
� � � � � � � � DC� � � � � F'6'� � � � � � � � Fullword� initially� 6
� � � � � � � � DS� � � � � F� � � � � � � � � � � Rsrvd� only,� no� init
� � � � � � � � END� � � � ADD2

First Demo Program (w/comments)First Demo Program (w/comments)

66

� � LOC� � OBJECT� CODE� � � SOURCE� STATEMENT

000000� � � � � � � � � � � � � � � ADD2� � � � CSECT
000000� 5810� F010� � � � � � � � � � � � � L� � � � � � 1,16(,15)
000004� 5820� F014� � � � � � � � � � � � � L� � � � � � 2,20(,15)
000008� 1A12� � � � � � � � � � � � � � � � � � AR� � � � � 1,2
00000A� 5010� F018� � � � � � � � � � � � � ST� � � � � 1,24(,15)
00000E� 07FE� � � � � � � � � � � � � � � � � � BCR� � � � B'1111',14
000010� 00000004� � � � � � � � � � � � � � DC� � � � � F'4'
000014� 00000006� � � � � � � � � � � � � � DC� � � � � F'6'
000018� DS� � � � � F
� END� � � � ADD2

First Demo Program, AssembledFirst Demo Program, Assembled

67

A Complete ProgramA Complete Program

Now that we have assembled the program,
What does that stuff on the left mean?
How did we get there?
And what do we do with it, now that it's
assembled?

Tune in tomorrow!

68

